\qquad

1) For the following parts, state which relations are functions and which are not. Be sure and explain your answer.
a)

\mathbf{x}	\mathbf{y}
3	4
4	7
5	10
10	25

b).

c. $\quad(3,2),(5,6),(0,3),(3,2)$
d.

\mathbf{x}	\mathbf{y}
3	4
3	7
6	10
12	25

2) State whether or not the following function is linear or not. Then evaluate $f(3)$
a) $\quad f(x)=3 x-7$
b) $\quad f(x)=x^{3}-x^{2}+2 x+4$
3) Find the equation of the line that goes through the points $(-2,-6)$ and $(6,14)$
4) Find the equation of the line that is perpendicular to your answer from question three and goes through the point $(1,1)$.
\qquad
5) Find the equation of the line that is parallel to your answer from question three and goes through the point $(1,1)$.
6) Graph the equation $y=\frac{1}{2} x+3$. Find the x and y intercepts and label them on the graph. Also state the slope and y-intercept.

7) When I worked on the farm the amount of money I was paid was directly related to the amount of hours that I worked. One week I worked for $\mathbf{2 5}$ hours and I was paid $\$ \mathbf{2 0 6 . 2 5}$.
a) Find the constant of variation and form an equation, relating money to hours worked.
b) If I worked for 34 hours the next week how much money did I get paid?
8) The following table gives my bowling scores y on the first 5 weeks x of my bowling league.
a) Find the best-fitting line for the data.
b) Predict what I will bowl on the $21^{\text {st }}$ week.

\mathbf{X} (Week)	$\mathbf{Y}($ Score $)$
1	120
2	115
3	132
4	135
5	140

\qquad
Mr. Doherty
9) For each graph state whether the correlation appears to be negative, positive, or if there appears to be no correlations.
a)

b)

10) Graph the equation $-4 y+3 x>2$ in the coordinate plane below.

11) Write an equation for the graph below.

\qquad
Mr. Doherty
12) Graph the function $f(x)=2|x-1|-3$ below, and explain all of the changes that happen if the original graph is $g(x)=|x|$.

13) Graph the function $f(x)=-\frac{3}{4}|x+5|+2$ below, and explain all of the changes that happen if the original graph is $g(x)=|x|$.

